

COLOR

Color – Basics

COLOR PERCEPTION OF THE HUMAN VISUAL SYSTEM

Color – Human perception

What is color?

- A subjective perception
- This perception is formed by three components:

Light spectral distribution

Object spectral reflection

Eye spectral sensitivity

Color – Human perception

The three primary valences the human eye.

are gsed to simulate the spectral sensitivity of

https://medium.com/hipster-color-science/a-beginners-guide-to-colorimetry-401f1830b65a

Matrix coefficents that convert the RGB space into one where the carefully chosen XYZ primaries exist at coordinates (1,0) (0,1) and (0,0) in the new chromaticity space.

[X] | 2.768 1.751 1.130| [R] [Y] = | 1.000 4.590 0.060| * [G] [Z] | 0 0.056 5.594| [B]

source: Colorimetry by Janos Schanda, page 30

Color – Human perception

➔ Transform to XYZ valences

Color matching function for 2° observer

Color – Human perception

$$X = k \cdot \int_{380nm}^{780nm} s(\lambda) \cdot r(\lambda) \cdot \bar{x}(\lambda) \cdot d\lambda$$

$$Y = k \cdot \int_{380nm}^{780nm} s(\lambda) \cdot r(\lambda) \cdot \bar{y}(\lambda) \cdot d\lambda$$

$$Z = k \cdot \int_{380nm}^{780nm} s(\lambda) \cdot r(\lambda) \cdot \bar{z}(\lambda) \cdot d\lambda$$

with:

 $s(\lambda)$ being the spectral distribution of the light source

 $r(\lambda)$ the spectral reflectance of the object

x, y, $z(\lambda)$ the color matching functions of the human eye

Color – Basics

COLOR RENDERING IN A CAMERA

RAW

RAW (demosaiced)

White balanced

sRGB_linear

sRGB

sRGB_optimized

Color rendering of a camera

RGB values created by the camera

Light source Chart / Object spectral distribution spectral reflection s

Camera spectral sensitivity

Color correction matrix

with:

- $s(\lambda)$ spectral distribution of the light source
- $r(\lambda)$ spectral reflectance of the object

 $c_x(\lambda)$ spectral sensitivity of the camera

RAW image (visualized to 8bit)

RAW - Detail

Detail

RAW - Detail

Detail, see the Bayer pattern

- The demosaic algorithm takes the raw R,G,B pixel data and interpolates the missing colors for each of the pixels.
- Computationally intensive and important to overall image quality
- Algorithms are closely guarded secrets
- Good algorithms
 - Sharp
 - Free from Artifacts
 - Visually plausible fakes for pixel colors not sampled
 - Doesn't amplify noise

Demosaic

Comparison of Bilinear and Edge-Directed

Bilinear

Edge Directed

RGB image, created from RAW

OECF

Displaying the OECF (ISO 14524)

Linear – no whitebalance

Displaying the OECF (ISO 14524)

Linear – whitebalance

AWB algorithms

- Brightness-value qualification
 - Certain illuminants unlikely to occur at certain scene brightness values
- Gray-world color constancy
 - Correct data to an average gray in the image
- Maximum RGB
 - assumes the scene contains a white lambertian surface
- Retinex
 - Estimates illuminant by maximum response of each channel
- Color by correlation
 - Establish a correlation statistic under which illuminants given image colors are possible.
- Others based on scene and camera information...

Assumption:

Certain illuminants can only occur at certain brightness values

- **Pro:** Algorithm generally works well
- **Con:** May fail in certain daylight conditions

Typical BV Qualification Table

Illuminant 0 Name = D75 Illuminant 1 Name = D65 Illuminant 2 Name = D55 Illuminant 3 Name = D50 Illuminant 4 Name = D45 Illuminant 5 Name = D40 and so on...

```
Illuminant 0 BV Range = \{2, 6\} --> this means allow 2 <= BV <= 6
Illuminant I BV Range = \{-128, 8\}
Illuminant 2 BV Range = \{-128, 127.9\}
Illuminant 3 BV Range = \{-128, 127.9\}
Illuminant 4 BV Range = \{-128, 5.01\}
Illuminant 5 BV Range = \{-128, 5.01\}
Illuminant 6 BV Range = { -128, 5.01 }
Illuminant 7 BV Range = \{-128, 5.01\}
Illuminant 8 BV Range = \{-128, 5.01\}
Illuminant 9 BV Range = \{-128, 5.01\}
Illuminant 10 BV Range = \{-128, 5.01\}
Illuminant I | BV Range = \{-128, 5.01\}
Illuminant 12 BV Range = \{-128, 5.01\}
Illuminant 13 BV Range = \{-128, 5.01\}
```

www.image-engineering.com

 $\mathbf{D}\mathbf{A}$

BV Qualification failure

It is daylight, but the object will require long exposure and is therefore not qualified as daylight.

Assumption:

Scenes contain a variety of colors. An average of all the colors is gray.

• One of the oldest white balance algorithms

Pro: Very simple to implement. In simplest form, doesn't require camera calibration

Con: Vivid colors can skew the average resulting in an estimate that is the complement of the color.

What does gray mean?

Gray-World Performance

"Gray-World failure"

The purple background shifts the average. If neutral is set to the average, then flesh goes green.

Photo courtesy J. Holm

- Another venerable white-balance algorithm
- Based on theory that brightest pixel represents a white object reflecting the illuminant source.
- Pro: Can help find a white object in an otherwise pastel scene.
- Con: Fails when brightest object is not white or when there are clipped pixels.

Max RGB Failure

0

White Balanced

White balanced image

The Luther Condition

- Camera spectral responses are not generally a linear combination of CIE color matching functions and therefore fail the Luther-Maxwell-Ives condition
- Failing the Luther condition will necessarily tradeoff the reproduction of some colors in favor of others using any linear camera colorimetric transform
- Highly dimensional color transforms can improve color matching performance somewhat

Q

Color correction matrix

The most simple form is a 3x3 matrix – the color correction matrix

Color correction matrix

More advanced systems use Multidimensional Look-up-Tables (MLUT)

Image with a linear tone curve

Tone Curve / Gamma

Tone curve

● ● ● B sRGB.icm				
#	Tag	Data	Size	Description
8	'rTRC'	'curv'	2.060	Red tone response curve
9	'bTRC'	'curv'	2.060	Blue tone response curve
10	'gTRC'	'curv'	2.060	Green tone response curve
11	'arts'	'sf32'	44	Signed 15.16-bit fixed values
12	'dmdd'	'desc'	136	Localized device model description string
13	'dmnd'	'desc'	112	Localized device manufacturer descriptio
14	'lumi'	'XYZ '	20	Tristimulus value

Final image – best for reproduction

0

Color rendering of a camera

- Color rendering is the process where the analyzed scene colors are altered to produce pleasing reproductions
- The optimal color rendering will depend on:
 - Scene characteristics
 - Output medium characteristics
 - Customer preferences

Gamut Mapping

Further optimization in the ISP – mainly for human observer

Color Space

• RGB_camera is a device depended measurement of the incoming light, it is not a description of color

• To give RGB values a meaning, they need to be provided in a defined color space, e.g. sRGB

QUANTIFY COLOR REPRODUCTION

Concept of color reproduction quality evaluation

Colorchecker

XYZ are linear but human vision is not

So called "MacAdamEllipse" show that the perseption of color difference is not equal over the different colors.

So CIE-XYZ can not be used, the CIE-LAB is used for the description of color difference.

a+

magenta

L*a*b* colorspace → Transformation to L*a*b* O white b+ yellow $L^* = 116 \times \sqrt[3]{\frac{Y}{Y}} - 16$ blue green $a^* = 500 \times \frac{\acute{e}}{\ddot{e}} \sqrt{\frac{X}{X_n}} - \sqrt[3]{\frac{Y}{Y_n}} \frac{\acute{u}}{\acute{u}}$ blue b $b^* = 200 \times \frac{\hat{e}}{\hat{e}_3} \sqrt{\frac{Y}{Y_n}} - \sqrt[3]{\frac{Z}{Z_n}} \frac{\hat{u}}{\hat{u}}$

3D color space Cartesian: $L^* \rightarrow Lightness$ $a^* \rightarrow cyan$ to magenta $b^* \rightarrow$ blue to yellow Polar: $L^* \rightarrow Lightness$ $C \rightarrow$ Chroma / Saturation $H \rightarrow Hue / Color Tone$

Concept of color reproduction quality evaluation

Color Difference CIE 1976

Color Difference Formula

When the CIE-Lab ColorSpace was developed, the computer power was not high enough to get it perfect. Therefore the Color Difference Formula have been updated after that:

- CIE1976 the original formula
- CIE1994 updated version, lower error on higher saturated colors
- CIE2000 further update

When you read or write specifications, you need to mention which formula to be used !

Workflow with iQ-Analyzer software

R

Quantify color reproduction

Result for ColorChecker SG / 3D-bar projection

Color reproduction

 Most cameras are optimized for "nice colors", not for perfect color reproduction.

 Color reproduction measurement indicates issues and should be part of all measurements

Q

COLOR PROCESSING

Color rendering of a camera

Color correction matrix

with:

 $s(\lambda)$ spectral distribution of the light source

 $r(\lambda)$ spectral reflectance of the object

 $c_x(\lambda)$ spectral sensitivity of the camera

Colormetric Performance

Average and Maximum CIECAM16 ΔE errors for 28 cameras

Transform	Ave	Max
3X3	1,92	6,29
2D MLUT (D=28)	1,36	5,07
3D MLUT (D=9)	1,18	4,41

Test Data: X-Rite ColorChecker

Colormetric Performance

Average and Maximum CIECAM16 ΔE errors for 28 cameras

in-situ database

in-situ measured spectral radiances of natural objects.

- More than 2000 objects measured
- Many skintones off all different kinds
- Spectral range 380 to 780 nm
- In 5 nm steps
- Radiances with and without tile correction
- Image provided with each measurement

in-situ database

i example for a typical measurement setup to measure skin tones.

in-situ database

Color calibration

Real world colors vs. ColorChecker.

Linear (3X3):

- ✓ Simple, fast, and easy
- ✓ Exposure invariant
- ✓ Smooth
- ✓ Low memory and computational overhead
- Limited accuracy
- Stationary throughout color space
- Limited flexibility and customizability

MLUT:

- ✓ High accuracy
- ✓ Exposure invariant (2D and 2.5D MLUTs)
- Can optimize noise performance variably throughout color space
- ✓ Gamut-mappable
- ✓ Can encode nonlinear rendering transforms
- ✓ Highly flexibile and customizable
- Higher memory and computational overhead

3x3 vs. MLUT

Transform type determines accuracy, noise performance, and flexibility

- Linear transform (3x3) is simple, fast, easy, smooth, and exposure invariant but compromises accuracy, noise performance, and customizability
- MLUTs improve accuracy, noise performance, and customizability but have a greater footprint

Eric Wallowit, IE Color Expert, CIC25 speaker

Q

CHARACTERIZATION METHODS

Characterization methods

In general, there are two different methods to characterize a camera/sensor:

- Chart-based method
- Spectra-based method

In all cases, the workflow requires to obtain pairs of camera RGB data and device independent color information CIE-XYZ

Chart-based method

Chart-based method

Q

Chart-based method

Idealized, assuming raw, linear, and noiseless where **M** is the estimator to be determined that transforms between camera responses **C** and tristimulus values **T** that minimizes colorimetric residual errors:

$$|| \mathbf{MC} - \mathbf{T} ||^2 \Rightarrow 0$$

First by linear estimation:

$$\mathbf{M} = \mathbf{T}\mathbf{C}^{\mathsf{t}}(\mathbf{C}\mathbf{C}^{\mathsf{t}})^{\mathsf{T}}$$

Generally followed by nonlinear optimization in perceptual coordinates (e.g. L*a*b*, CIECAM02):

f(T)
Iterate M:
$$||\Delta E||^2 \Rightarrow 0$$
 De
f(MC) [↑] wh

Degrees of freedom can be reduced by constraining **M** to the scene adopted white point

Chart-based method

RGB values created by the camera.

Spectra-based method

RGB values created by the camera.

Spectra-based method

R

Spectra-based method

solve for **M** as illustrated previously

- ✓ Simple, fast, and easy
- ✓ Minimal equipment required (target and colorimetric data)
- Valid transform domain is limited to the target gamut and capture conditions
- Multiple sets of target captures and precomputed transforms required for each Original Scene adopted white point
- Chart colorants are not generally representative of likely Original Scene objects resulting in metameric errors
- Limited to low-dimensionality transforms (matrix)

- Transform can be computed for any Original
 Scene adopted white point
- Training data is selected to be representative of Original Scene objects and radiation modes thereby minimizing metameric errors and optimizing for the likely use-cases
- ✓ Transforms are robust over a wide range of capture conditions and radiation modes
- ✓ Transforms are easily updated
- Suited to higher-dimensionality transforms (MLUT)
- Requires to measure camera spectral sensitivities

in-situ-database

Chart

beth ColorChecker[®] Color Rendition Chart

"real live"™

For the same camera, two different color transforms CCMs were created: CCM_{spectra} and CCM_{chart}

- CCM_{spectra} was created using the spectra approach, the used training data was a large set of colors from the InSitu database
- CCM_{chart} was created using a color checker test target, so the training data is only the patches from that chart

So "Spectra" uses the spectral data for training. "Chart" uses the Chart for Training.

Training

With each CCM, the color error has been tested.

So "Spectra" was tested using the ColorChecker "Chart" was tested using the InSitu Data.

/5.7 .8	/2.2
/1.9 1.1	/13.4
	/ 1.9 1.1

Q

Colorimetric errors

Example: .7 / 5.7

Average color error for all tested colors in $\Delta E = 0.7$ Maximum color error for all tested colors in $\Delta E = 5.7$

TypicalAverage /Maximum Δ E colorimetric errors

- The CCM_{spectra} was created using the InSitu data.
- When calculating the error for this data, the average ΔE is 0.7, max, 5.7
- When calculating the error for ColorChecker data, the average ΔE is 0.8 and max ΔE is 2.2

CCM_spectra

- The CCM_{chart} was created using the Colorchecker.
- When calculating the error for the color checker, the average ΔE is 0.6, max, 1.9
- When calculating the error for InSitu data, the average ΔE is 1.1 and max ΔE is 13.4

	Training	Test
Spectra	.7 / 5.7	.8 / 2.2
Chart	.6 /1.9	1.1 / 13.4
TypicalAverage/Maximum ΔEcobrimetricerrors		

Conclusion

- The CCM_{spectra} performes only slightly worse on the ColorChecker than the dedicated CCM_{chart} but very good on the real (in situ) colors.
- The CCM_{chart} performs well for a ColorChecker, but significantly worse on the real (in situ) colors.

 \rightarrow For real world colors the CCM_{spectra} is the much better choice!

- ✓ Simple, fast, and easy
- ✓ Minimal equipment required (target and colorimetric data)
- Valid transform domain is limited to the target gamut and capture conditions
- Multiple sets of target captures and precomputed transforms required for each Original Scene adopted white point
- Chart colorants are not generally representative of likely Original Scene objects resulting in metameric errors
- Limited to low-dimensionality transforms (matrix)

- Transform can be computed for any Original
 Scene adopted white point
- Training data is selected to be representative of Original Scene objects and radiation modes thereby minimizing metameric errors and optimizing for the likely use-cases
- ✓ Transforms are robust over a wide range of capture conditions and radiation modes
- ✓ Transforms are easily updated
- Suited to higher-dimensionality transforms (MLUT)
- Requires to measure camera spectral sensitivities

Q

CALIBRATION TOOLS

X-Rite ColorChecker SG

Color Chart used in Photography

Monochromator

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/10_Spectros

Filter based system

Interference filter

camSPECS filter

Filter based system

RAW image capture of 39 filter

Filter based system

Q

Direct measurement

iQ-LED for calibration

Spectra of the 22 different channels

Estimation

Without any knowledge about the expected sensitivity, many solutions are possible

Camera dataset

Camera Dataset from Jiang et al. (RIT)

Dataset used for a principal component analysis (PCA)

Paper at CIC25

Multidimensional Estimation of Spectral Sensitivities

Eric Walowit, Lake Tahoe, California, USA Holger Buhr and Dietmar Wüller, Image Engineering, Frechen, Germany

Core concept

Core concept

Captured data

each device captures all channels + black + D65 = 22 images ("flat field")

Spectral sensitivity measurement

use image data to calculate

Details on workflow

Details on workflow

Capture all 20 single LED spectral distributions (+black +std. illu.)

Process time estimation

- spectral response toggles 22 illuminants each at 150 [ms]
 22 * 150 [ms] = 3300[ms]
- camera should capture a video stream >20 [fps]
- frame grabbing from camera stream has to be synchronized for more accurate results
- depending on camera's transfer rate, start up time etc. additional ~ 2500 [ms]
- handling and report time
 ~2500 [ms]

total time: ~ 8.3 [sec]

Analysis software "camSPECS"

