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COLOR
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COLOR PERCEPTION OF THE HUMAN VISUAL SYSTEM

Color – Basics
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Color – Human perception

What is color? 

• A subjective perception

• This perception is formed by three components: 

Light
spectral distribution

Object
spectral reflection

Eye
spectral sensitivity
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Color – Human perception

The three primary valences  are used to simulate the spectral sensitivity of 
the human eye.

r, g, b 
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https://medium.com/hipster-color-science/a-beginners-guide-to-colorimetry-401f1830b65a
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Color – Human perception
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➔ Transform to XYZ valences



www.image-engineering.com

Color – Human perception

with:

s() being the spectral distribution of the light source

r() the spectral reflectance of the object

x, y, z() the color matching functions of the human eye

𝑋 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ ҧ𝑥(𝜆) ∙ 𝑑𝜆

𝑌 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ ത𝑦(𝜆) ∙ 𝑑𝜆

𝑍 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ ҧ𝑧(𝜆) ∙ 𝑑𝜆
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COLOR RENDERING IN A CAMERA

Color – Basics
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Color

RAW RAW (demosaiced) White balanced

sRGB_linear sRGB sRGB_optimized
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Color rendering of a camera

RGB values created by the camera

X X =  RGB

Light source
spectral distribution

Chart / Object
spectral reflection

Camera
spectral sensitivity
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with:

s() spectral distribution of the light source

r() spectral reflectance of the object

cX() spectral sensitivity of the camera

Color correction matrix

𝐺𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ 𝑐𝐺(𝜆) ∙ 𝑑𝜆

𝐵𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ 𝑐𝐵(𝜆) ∙ 𝑑𝜆

𝑅𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑘 ∙ න
380𝑛𝑚

780𝑛𝑚

𝑠(𝜆) ∙ r (𝜆) ∙ 𝑐𝑅 (𝜆) ∙ 𝑑𝜆
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RAW

RAW image (visualized to 8bit)
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RAW - Detail

Detail



www.image-engineering.com

RAW - Detail

Detail, see the Bayer pattern
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Demosaic

• The demosaic algorithm takes the raw R,G,B pixel data and interpolates the missing colors for each of 
the pixels.

• Computationally intensive and important to overall image quality

• Algorithms are closely guarded secrets

• Good algorithms

– Sharp

– Free from Artifacts

– Visually plausible fakes for pixel colors not sampled

– Doesn’t amplify noise

Demosaic
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Comparison of Bilinear and Edge-Directed

Bilinear Edge Directed

Images courtesy R. Kimmel
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Demosaiced

RGB image, created from RAW
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OECF 

black body visible spectrum

Displaying the OECF (ISO 14524)

Linear – no whitebalance

linear
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OECF 

black body visible spectrum

Displaying the OECF (ISO 14524)

Linear – whitebalance

linear
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AWB algorithms

• Brightness-value qualification
– Certain illuminants unlikely to occur at certain scene brightness values

• Gray-world color constancy
– Correct data to an average gray in the image

• Maximum RGB
– assumes the scene contains a white lambertian surface

• Retinex
– Estimates illuminant by maximum response of each channel

• Color by correlation
– Establish a correlation statistic under which illuminants given image colors are possible.

• Others based on scene and camera information…
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Brightness-value Qualification

Assumption: 

Certain illuminants can only occur at certain brightness values

Pro:  Algorithm generally works well

Con:  May fail in certain daylight conditions
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24

Typical BV Qualification Table

Illuminant 0 Name  = D75

Illuminant 1 Name  = D65

Illuminant 2 Name  = D55

Illuminant 3 Name  = D50

Illuminant 4 Name  = D45

Illuminant 5 Name  = D40 and so on…

Illuminant 0 BV Range =  { 2,     6  } --> this means allow 2 <= BV <= 6

Illuminant 1 BV Range =  { -128,  8  }

Illuminant 2 BV Range =  { -128,  127.9  }

Illuminant 3 BV Range =  { -128,  127.9  }

Illuminant 4 BV Range =  { -128,  5.01   }

Illuminant 5 BV Range =  { -128,  5.01   }

Illuminant 6 BV Range =  { -128,  5.01   }

Illuminant 7 BV Range =  { -128,  5.01   }

Illuminant 8 BV Range =  { -128,  5.01   }

Illuminant 9 BV Range =  { -128,  5.01   }

Illuminant 10 BV Range = { -128,  5.01   }

Illuminant 11 BV Range = { -128,  5.01   }

Illuminant 12 BV Range = { -128,  5.01   }

Illuminant 13 BV Range = { -128,  5.01   }
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BV Qualification failure 

It is daylight, but the object will require long exposure and is therefore not qualified as daylight. 
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Gray World

Assumption: 

Scenes contain a variety of colors.  An average of all the colors is 
gray. 
• One of the oldest white balance algorithms

Pro: Very simple to implement. In simplest form, doesn’t require 
camera calibration

Con:  Vivid colors can skew the average resulting in an estimate 
that is the complement of the color.

What does gray mean?
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Gray-World Performance

“Gray-World failure”

The purple

background shifts the 

average.

If neutral is set to the 

average, then flesh 

goes green. 

Photo courtesy J. Holm
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Maximum RGB

• Another venerable white-balance algorithm

• Based on theory that brightest pixel represents a white object 
reflecting the illuminant source.

• Pro:  Can help find a white object in an otherwise pastel scene.

• Con: Fails when brightest object is not white or when there are 
clipped pixels.
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Max RGB Failure
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White Balanced

White balanced image
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The Luther Condition

Transform

M

• Camera spectral responses are not generally a linear combination of CIE color matching 
functions and therefore fail the Luther-Maxwell-Ives condition

• Failing the Luther condition will necessarily tradeoff the reproduction of some colors in 
favor of others using any linear camera colorimetric transform

• Highly dimensional color transforms can improve color matching performance somewhat
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Rcamera

Gcamera

Bcamera
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Color correction matrix

Sensor-output sRGB
Color 

correction
matrix

device 
independent

device 
dependent

The most simple form is a 3x3 matrix – the color correction matrix
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Rcamera

Gcamera

Bcamera
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Color correction matrix

Sensor-output sRGB
Multidimensional

Look-up-table

device 
independent

device 
dependent

More advanced systems use Multidimensional Look-up-Tables (MLUT)
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sRGB_linear

Image with a linear tone curve
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Tone Curve / Gamma
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Tone curve
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sRGB_gamma

Final image – best for reproduction
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Tone mapping 

Gamut mapping

Color preference 

Color Rendering:

Color rendering of a camera

A/D 

Converte

r

Camera RAW 

(device 

dependent)

Camera compensation:

Exposure 

Adjustments

White balancing

Sensor 

characterization

Scene-referred 

color encoding

(device 

independent)

Scene editing 

(re-lighting, 

etc.)

Output-referred 

color encoding

(device 

independent)

Picture editing

(add text, etc.)

Display 

color 

transform

Printer 

color 

transform

Softcopy image 

(device 

dependent)

Hardcopy image 

(device 

dependent)

Color Image Workflow



www.image-engineering.com

Color Rendering

• Color rendering is the process where the analyzed scene colors 
are altered to produce pleasing reproductions

• The optimal color rendering will depend on:

– Scene characteristics

– Output medium characteristics

– Customer preferences
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Gamut Mapping
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sRGB_final

Further optimization in the ISP – mainly for human observer
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Color Space

• RGB_camera is a device depended measurement of the incoming light, it 
is not a description of color

• To give RGB values a meaning, they need to be provided in a defined 
color space, e.g. sRGB

100 500

€, $, £ 

<
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QUANTIFY COLOR REPRODUCTION
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Quantify color reproduction

Concept of color reproduction quality evaluation

Image / sRGB CIE XYZ CIE L*a*b*

CIE XYZ CIE L*a*b*

Reference

Color 
differences: 

ΔE
ΔL
ΔC
ΔH
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Colorchecker
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Quantify color reproduction

XYZ are linear but human 
vision is not

So called „MacAdamEllipse“ 
show that the perseption of
color difference is not equal
over the different colors. 

So CIE-XYZ can not be used, 
the CIE-LAB is used for the
description of color difference. 

MacAdam(1942) ellipses plotted on
the CIE xy 1931 chromaticity diagram.
Ellipses are 10 x actual size.

https://commons.wikimedia.org/wiki/File:CIExy1931_MacAdam.png
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Quantify color reproduction

L*a*b* colorspace

➔ Transformation to L*a*b*
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Quantify color reproduction

3D color space

Cartesian:

L* → Lightness
a* →cyan to magenta
b* → blue to yellow

Polar:
L* → Lightness
C → Chroma / Saturation
H → Hue / Color Tone
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Quantify color reproduction

Concept of color reproduction quality evaluation

Camera RGB CIE XYZ CIE L*a*b

CIE XYZ CIE L*a*bReference

DCabi = ai

*
2

+ b*
2

i - a*
2

ref + b*
2

ref

Color Difference CIE 1976

Color 
differences: 

ΔE
ΔL
ΔC
ΔH
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Color Difference Formula

When the CIE-Lab ColorSpace was developed, the computer power was not 
high enough to get it perfect. Therefore the Color Difference Formula have 
been updated after that: 

• CIE1976 – the original formula 

• CIE1994 – updated version, lower error on higher 
saturated colors

• CIE2000 – further update

When you read or write specifications, you need to mention which formula 
to be used !
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Quantify color reproduction

Workflow with iQ-Analyzer software

Image file

Reference

Graphical results

iQ-Analyzer

Define:
• White point
• Color difference

formula
• Color space
• Reference values

Numerical results

All Neutral Color

∆E(mean) 11.8 9.1 13.6

∆L(mean) 2.9 0.7 4.4

∆C(mean) 0.5 6.8 -3.7

∆H(mean) 0.3 2.8 -1.3

∆E(max) 26.7 14.0 26.7



www.image-engineering.com

Quantify color reproduction

Result for ColorChecker SG / 3D-bar projection
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Color reproduction

• Most cameras are
optimized for „nice colors“, 
not for perfect color
reproduction. 

• Color reproduction
measurement indicates
issues and should be part
of all measurements
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COLOR PROCESSING
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Tone mapping 

Gamut mapping

Color preference 

Color Rendering:

Color rendering of a camera

A/D 
Converter

Camera RAW 
(device 

dependent)

Camera compensation:

Exposure 
Adjustments

White balancing

Sensor 
characterization

Scene-referred 
color encoding

(device 
independent)

Scene editing 
(re-lighting, 

etc.)

Output-referred 
color encoding

(device 
independent)

Picture editing
(add text, etc.)

Display 
color 

transform

Printer 
color 

transform

Softcopy image 
(device 

dependent)

Hardcopy image 
(device 

dependent)

Color Image Workflow
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Color correction matrix

with:

s() spectral distribution of the light source

r() spectral reflectance of the object

cX() spectral sensitivity of the camera

RCamera = k × s(l)
380nm

780nm

ò × r(l) × cR (l) × dl

GCamera = k × s(l)
380nm

780nm

ò × r(l) × cG (l) × dl

BCamera = k × s(l)
380nm

780nm

ò × r(l) × cB (l) × dl



www.image-engineering.com

Colormetric Performance

Average and Maximum CIECAM16 ∆E errors for 28 cameras

Transform Ave Max

3X3 1,92 6,29

2D MLUT (D=28) 1,36 5,07

3D MLUT (D=9) 1,18 4,41

Test Data: X-Rite ColorChecker
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Colormetric Performance

Average and Maximum CIECAM16 ∆E errors for 28 cameras

Transform Ave Max

3X3 0,84 11.0

2D MLUT (D=28) 0,83 10,3

3D MLUT (D=9) 0,81 8,07

Test Data: IE InSitu spectra
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in-situ database

in-situ measured spectral radiances of natural objects.

• More than 2000 objects measured

• Many skintones off all different kinds

• Spectral range 380 to 780 nm

• In 5 nm steps

• Radiances with and without tile correction

• Image provided with each measurement
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in-situ database

tile is visible and shows the typical way it was used. The areas that were measured are 

indicated using the measurement IDs. 

Figure 1: An example for a typical measurement setup to measure skin tones. 

 

Data Preparation 

The resulting database contains the measured spectral radiances, the related adapted white 

measurement, the white tile corrected measurement and for most of the measurements an 

image of the measured object. The measurements are available in 5nm increments as well. 

Each object is characterized by a measurement ID, a descriptive object type and subtype, a 

number for the related image and the measurement data. 

 

Examples 

 
Figure 2: A comparison of two orange colors. The Patch of the 

color checker (Measurement ID 15) and the orange ad board of the 

shop (ID bc139). 

In Situ Measured Spectral Radiation of Natural Objects
Dietmar Wueller, Image Engineering, Germany

Abstract
The only commonly known source for some in situ measured spectral radiances is ISO 17321-1 [1]. It describes the prin-

ciple of how the color characterization of a digital camera works and provides spectral radiances for 14 common objects. 

This paper summarizes the results of a project that was started to collect several hundred measurements of all different 

kinds of objects under various illuminations keeping in mind typical scenes and objects that people take photographs of. In 

many cases the spectral radiation of objects is not only that of the reflec t ed light. Sometimes the light coming form objects 

like leaves for example is a mixture of the reflec t ed and the transmitted light. In other cases inter reflec t ions between the 

objects modify the spectral radiance in scenes and some objects like the human skin appears totally different in real live 

compared to the skin tones of a refle

c

t ive col or  tar get .

The collected data can be used as a scientific data basis for different studies related to natural objects. But the main rea-

son to collect the data was to provide training data for the color characterization of digital cameras. Future work will show 

whether a carefully collected subset of the database is suffici ent  to create an ideal matrix or look up table for a digital ca-

mera but for the time being all app. 2500 measurements are available and used to calculate camera matrices.

Introduction 
As is widely known digital cameras require a color characterization transform to provide correct scene referred images as 

described in ISO 22028-1 [2]. Most cameras use a 3x3 color matrix to convert the sensor RGB values into values that try 

to represent the scene colorimetry. The easiest way to calculate the correction matrix is to use the spectral distributions 

of typical known light sources and the spectral reflec t ion of some known objects. Based on this data the product with the 

measured spectral sensitivities of the camera leads to the camera’s RGB output values. At the same time using the color 

matching functions allows to calculate the XYZ values for these objects. Having both the camera RGB and the XYZ values 

the color correction transform that produces the least error can be calculated. 

Standard light sources in combination with a reflec t ive target are often used to calculate the matrix. But is that the best 

way? Do standard illuminants and pigmented papers really represent natural objects? We know they don’t. But there is 

no database available that can be used as training data for “the best color transform” and that represents real objects un-

der various natural conditions. All databases that are available measured “dead” objects using artifici al  light sources. This 

paper describes the collection of a database of real objects measured under real light sources and shows a couple of ex-

amples how to use this data and the differences compared to a simple reflec t ive tar get .

Measurements
To gather the data a Photo Research PR650 portable spot spectroradiometer was used. This radiometer provides the 

spectral radiances for the visual spectrum between 380 to 780 nm in 4nm increments. In order to provide a reference for 

the lighting situation a 10 x 10 cm spectralon plate was used as a white reference and placed in the scenes in a way that 

its refle

c

t ion provides a good approximation of what the operator thought to be the adapted white for the scene. In addition 

a photograph was taken of most of the scenes to identify the measured objects and is provided with the measurements. In 

some of them the white tile is visible and shows the typical way it was used. The areas that were measured are indicated 

using the measurement IDs.

Figure 1: The image shows a typical measurement setup to measure skin tones.

Figrue 1a: An example for the presentation of the results.

spectral measurement from Scene 726
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Data Preparation
The resulting database contains the measured spectral radiances of the various objects, the related adapted white mea-

surement, the white tile corrected measurement, and for most of the measurements an image of the measured object. The 

measurements are scaled to 5nm increments. Each object is characterized with a measurement ID and the data contains, 

a descriptive object type and subtype, a number for the related image, and the measurement data itself.

Real world colors vs. Color Charts
Although one may assume that the available color targets represent the real world colors, it is 

obvious that a reflec t ive target is not capable of doing that. Even though the colors of a color 

checker in figu r e 3 appear to span a wide color space a few of the randomly selected colors 

from the real world measurements are far outside the gamut of the color checker. One can not 

even be displayed in the 3D plot created by a typical software because the L* value reaches 

102 meaning the brightness was higher than that of the diffuse white which often is the case 

for single objects in photographic scenes.

The bright, high-saturated blue sky in the same figu r e (4th color lower row on the right part 

of figu r e 3) turns purple as the same color does in many cameras. It is far outside the gamut 

of surface colors but it occurs quite often in real images and the color matrix needs to handle 

this color in the right way.

The bright blues as well as the dark reds are also not present in the color chart. The Color 

Checker SG addresses these colors but it is not capable of creating the high-saturated bright 

blue tones.

Does the green of the CC color patches really look like green grass?

As can be seen from figu r e 6 the green of natural objects is completely different than the two 

green color patches of the color checker. On the one hand the red and IR reflec t ion is much higher due to the reflec t ance 

of the chlorophyll. On the other hand the spectral reflec t ion of natural green is much broader than that of the pigment paper 

colors.

We get the same kind of variation when real skin tones are compared to skin tone patches (see figu r e 8). This can lead to 

variations when skin tones are corrected based on the spectral distribution of a patch.

Comparison of different orange tones
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Figure 2: A comparison of two orange colors. The Patch of the color 

checker (Measurement ID 15) and the orange advertising board of 

the shop (ID bc139).

Figure 3: On the left are the well-known x-rite color checker 

patches. On the right are some randomly selected measured 

real world colors.

Figure 5: The marked real world colors in the image are far 

outside of the gamut of the color checker.

 

Green Comparison
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Figure 6: The green tones of the color checker compared to the real green of grass or a 

palm tree.
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Figure 7: The comparison of a variety of skin-tones as white tile corrected spectral radiances.

Objects that emit radiation
For objects that emit radiation we get in trouble with conventional colorimetry since we do not 

have a white anymore that we can refer to. In this case we can only use the spectral distribu-

tion, as it is, calculate XYZ values and normalize to Y. If we calculate the L*a*b* values for the 

XYZ combination and refer that to D50 and the 2° observer we receive the following table:

  X Y Z L* a* b*

 green 37,896 100 8,965 100 -133,73 104,52

 blue 269,296 100 1402,516 100 204,18 -314,47

 red 196,720 100 6,980 100 134,19 112,16

 yellow 95,235 100 1,787 100 -2,03 144,22

 

But this does not make any sense because the observer is not adapted to D50 when he views these objects. Still they play 

an important part in photography and need to be taken into account for camera characterization.

 

Caucasian Skin Tones
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Figure 8: The Caucasian skin tones normalized to the maximum value for each measure -

ment. The two skin tone patches of the color checker added for comparison.

Asian Skin Tones
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Figure 9: The relative values for the Asian skin requires some more evaluation that is cur-

rently in progress and will be available for the fin

a

l  paper . The change in skin tone for a girl 

that seemed to be an Asian/Caucasian mix is interesting to see.

Afrikan Skin
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Figure 10: The African Skin is smoother in its spectral refle

c

t ion besi des the lowe r  ref lec -

tion level in general.

 

Colored light sources
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Figure 11: The spectral distribution of colored light sources.

Figure 12: Examples for colored light sources in images.

Transmission and refle

c

t ion
When the spectral radiance of objects is measured it is important to know the adapted white that we get from the white tile 

but it is also important to know the characteristics of the illumination. To provide an example we have measured objects 

under natural daylight. One time the sky provided a diffuse illumination and the other the same objects were measured 

under direct sunlight.  The white tile was used in both cases to correct the data for the adapted white and the spectral data 

was referenced to the max wavelength to avoid any remaining influ

e

nce from the amo unt  of  light .

The towel that was not transparent shows nearly no variation of the spectral radiances after the white tile correction. The 

more transparent the object is the higher the difference between the two measurements. The yellow evening primrose has 

a huge amount of transmitted light when illuminated by direct sunlight.

Summary
The comparison of color patches with colors of real objects has shown that the difference in the spectral distribution is si-

gnific

a

nt . We have also demonstrated that reflec t ive targets are not able to span the whole color space a camera needs 

to be able to capture. This leads to the conclusion that color targets are not the ideal basis for a camera color correction 

matrix. Therefore a database of in situ measured spectral radiances is necessary to improve the quality of digital cameras.  

This database needs to consist of measurements taken at different illuminations of a huge variety of objects. Future work 

will show if it is possible to derive a limited but well selected dataset for the determination of high quality matrices for digital 

cameras.

Besides this photographic application that was the reason for building the database there may be other areas where spec-

tral radiations of natural objects are of interest such as medicine, pharmacology , agriculture, biology, geology etc.
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Comparison of objects under diffuse and sunny sky

0

0,2

0,4

0,6

0,8

1

1,2

380 430 480 530 580 630 680 730 780

Wavelength

relative spectral radiance

Towel cloud

Towel sun

Sunflower cloud

Sunflower sun

Evening primrose yellow

Evening primrose yellow sun

Red Rose cloud

Red Rose sun

Purple Petunia cloud

Purple Petunia sun

Figure 13: The data shows that the relative spectral radiance changes with the lighting conditions. 

Figure 14: The evening primrose on the left with diffuse illumination and on the right under 

direct sunlight

Figure 15: One of the other scenes under dif fuse and direct illumination.

Skin Tones
Skin tones are very important in digital photography since about 80 % of all pictures taken with cameras contain one or 

more persons [3]. 

ISO 17321 only provides two samples of Caucasian skin tones. The spectral reflec t ance of Asian and African skin however 

is different and even among the Caucasian skin tones there is a variety of dif ferences as our evaluation shows.

For the color characterization of a camera the absolute radiance values are important as well as the spectral distribution. 

For other applications the relative spectral distribution may be the most important thing. To show the usability we have pro-

cessed the data and normalized it to the max value of each measurement. The three graphs for the different skin tones (Fi-

gure 8 to 10) show these comparisons. The Caucasian skin shows an interesting behavior with its low reflec t ance around 

550 nm. We can see that Asian skin tones are not that much different from the Caucasian skin but the drop in reflec t ance 

in the 520 to 590 nm area is not as strong which makes the Asian skin look slightly more yellow. Caucasian 4 and the Asian 

Baby are known to have a sensitive skin with a bright skin tone. It is interesting to see the drop in reflec t ance below 400nm 

indicating a high absorbance level for blue and the near UV. This may be of interest from a medical point of view although 

it requires more investigation. But the data required may already be in the database.
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in-situ database
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Color calibration
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Tradeoffs

Linear (3X3):

✓ Simple, fast, and easy

✓ Exposure invariant

✓ Smooth

✓ Low memory and 
computational overhead

- Limited accuracy

- Stationary throughout color 
space

- Limited flexibility and 
customizability

MLUT: 

✓ High accuracy

✓ Exposure invariant (2D and 2.5D 
MLUTs)

✓ Can optimize noise performance 
variably throughout color space

✓ Gamut-mappable

✓ Can encode nonlinear rendering 
transforms

✓ Highly flexibile and customizable

- Higher memory and 
computational overhead
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3x3 vs. MLUT

Transform type determines accuracy, noise performance, and flexibility

• Linear transform (3x3) is simple, fast, easy, smooth, and exposure 
invariant but compromises accuracy, noise performance, and 
customizability

• MLUTs improve accuracy, noise performance, and customizability but 
have a greater footprint

Eric Wallowit, IE Color Expert, CIC25 speaker
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CHARACTERIZATION METHODS
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Characterization methods

In general, there are two different methods to characterize a 
camera/sensor: 

• Chart-based method

• Spectra-based method

In all cases, the workflow requires to obtain pairs of camera RGB data and 
device independent color information CIE-XYZ
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Chart-based method

X X =   RGB

Lightsource
spectral distribution

Chart / Object
spectral reflection

Camera / human
spectral sensitivity

X X =   XYZ
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Chart-based method
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reference illumination

RGB 
patch values

XYZ
patch values

Degrees of freedom can be reduced by 
constraining M to the scene adopted 
white point

T = M C

Idealized, assuming raw, linear, and noiseless where M is the estimator to be determined that transforms 
between camera responses C and tristimulus values T that minimizes colorimetric residual errors:

|| MC - T ||
2

⇒ 0
First by linear estimation:

M = TC
t
(CC

t
)
-1

↴

↴

Iterate M: || ∆ E ||
2
⇒ 0

f(T)

f(MC)

Generally followed by nonlinear optimization in perceptual coordinates (e.g. L*a*b*, CIECAM02):

Chart-based method
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Chart-based method

X X =   RGB

Lightsource
spectral distribution

Chart / Object
spectral reflection

Camera
spectral sensitivity

RGB values created by the camera.

Taken as given measuredunknown
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Spectra-based method

X X

RGB values created by the camera.

Intended simulation data calculatedmeasured

Camera
spectral sensitivity

Lightsource
spectral distribution

Chart / Object
spectral reflection

=   RGB
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Spectra-based method

X X =   RGB

Lightsource
spectral distribution

Chart / Object
spectral reflection

Camera / human
spectral sensitivity

X X =   XYZ
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then: T = M C as before

solve for M as illustrated previously

T = O I S

C = R I S

Training spectra colorimetric values

Training spectra camera values

Spectra-based method
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Chart: 

✓ Simple, fast, and easy

✓ Minimal equipment required (target and 
colorimetric data)

- Valid transform domain is limited to the 
target gamut and capture conditions 

- Multiple sets of target captures and pre-
computed transforms required for each 
Original Scene adopted white point 

- Chart colorants are not generally 
representative of likely Original Scene 
objects resulting in metameric errors

- Limited to low-dimensionality transforms 
(matrix)

Spectra: 

✓ Transform can be computed for any Original 
Scene adopted white point 

✓ Training data is selected to be representative of 
Original Scene objects and radiation modes 
thereby minimizing metameric errors and 
optimizing for the likely use-cases

✓ Transforms are robust over a wide range of 
capture conditions and radiation modes

✓ Transforms are easily updated 

✓ Suited to higher-dimensionality transforms 
(MLUT)

- Requires to measure camera spectral 
sensitivities

Tradeoffs
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in-situ-database

Chart „real live“™vs.
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Training

For the same camera, two different color transforms CCMs were created: CCMspectra and CCMchart

• CCMspectra was created using the spectra approach, the used training data was a large set of colors 
from the InSitu database

• CCMchart was created using a color checker test target, so the training data is only the patches 
from that chart

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4

So “Spectra” uses the spectral 
data for training. 
“Chart” uses the Chart for 
Training.
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Training

With each CCM, the color error has been tested. 

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4

So “Spectra” was tested using 
the ColorChecker
“Chart” was tested using the 
InSitu Data. 
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Colorimetric errors

Example: .7 / 5.7

Average color error for all tested colors in ∆E = 0.7

Maximum color error for all tested colors in ∆E = 5.7

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4
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CCM_spectra

• The CCMspectra was 
created using the 
InSitu data. 

• When calculating the 
error for this data, the 
average ∆E is 0.7, max, 
5.7

• When calculating the 
error for ColorChecker
data, the average ∆E is 
0.8 and max ∆E is 2.2

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4
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CCM_spectra

• The CCMchart was 
created using the 
Colorchecker. 

• When calculating the 
error for the color 
checker, the average 
∆E is 0.6, max, 1.9

• When calculating the 
error for InSitu data, 
the average ∆E is 1.1 
and max ∆E is 13.4

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4
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Conclusion

• The CCMspectra performes only 
slightly worse on the ColorChecker
than the dedicated CCMchart but very 
good on the real (in situ) colors. 

• The CCMchart performs well for a 
ColorChecker, but significantly worse 
on the real (in situ) colors. 

→ For real world colors the CCMspectra is 
the much better choice!

C olorim etric Errors
• The Spectra-based transform  w as trained 
w ith the W üller training Spectra and tested 
w ith the C hart data 

• The C hart-based transform  w as trained w ith 
the C hart data and tested w ith the W üller 
training Spectra 

• The Spectra-based transform  typically 
produces reasonable results on both the 
robust training Spectra as w ell as the C hart 
data 

• The C hart-based transform  typically 
produces reasonable results on the C hart 
data but significantly larger errors on the 
training Spectra

Typical A verage / M axim um  ∆ E colorim etric errors

Training Test

S pectra
.7 / 5.7 .8 / 2.2

C hart
.6 / 1.9 1.1 / 13.4
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Chart: 

✓ Simple, fast, and easy

✓ Minimal equipment required (target and 
colorimetric data)

- Valid transform domain is limited to the 
target gamut and capture conditions 

- Multiple sets of target captures and pre-
computed transforms required for each 
Original Scene adopted white point 

- Chart colorants are not generally 
representative of likely Original Scene 
objects resulting in metameric errors

- Limited to low-dimensionality transforms 
(matrix)

Spectra: 

✓ Transform can be computed for any Original 
Scene adopted white point 

✓ Training data is selected to be representative of 
Original Scene objects and radiation modes 
thereby minimizing metameric errors and 
optimizing for the likely use-cases

✓ Transforms are robust over a wide range of 
capture conditions and radiation modes

✓ Transforms are easily updated 

✓ Suited to higher-dimensionality transforms 
(MLUT)

- Requires to measure camera spectral 
sensitivities

Tradeoffs
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CALIBRATION TOOLS



www.image-engineering.com

X-Rite ColorChecker SG

Color Chart used in Photography
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Monochromator

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/10_Spectros
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Filter based system

camSPECS express
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Interference filter

wavelength [nm]
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Filter based system

RAW image capture of 39 filter
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Filter based system
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Direct measurement

Camera Capture

Camera Output

Monochromator Output

MonochromatorSpectra

need current clean 
spectra examples
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IQ-LED
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iQ-LED for calibration
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iQ-LED

Spectra of the 22 different channels
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Estimation

Without any knowledge about the expected sensitivity, many solutions are possible
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Dataset used for a principal component analysis (PCA)

Camera Dataset from Jiang et al. (RIT)

Camera dataset
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Paper at CIC25

file://X/IE/projects/Hensoldt/Paper/MESS.pdf
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Core concept

R&D production line

spectral sensitvity
estimation

direct measurements (>15 devices)

camera 
database

iQ-LED calibration 
data

22 images per 
sample

~ weekly recalibration captured images

alternative: spec. sens. from literature

sample device (multiple, one by one)iQ-LED base device

Wavelength [nm]

re
l. 

in
te

n
si

ty
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Core concept

spectral sensitvity
estimation

direct measurements (>15 devices)

camera 
database

iQ-LED calibration 
data

22 images per 
sample

~ weekly recalibration captured images

alternative: spec. sens. from literature

sample device (multiple, one by one)iQ-LED base device

Wavelength [nm]

re
l. 

in
te

n
si

ty

Done by Image Engineering with
devices (>15) or data from customer!

End-of-line implementation with
Image Engineering and Trioptics

products!

R&D production line
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Captured data

each device captures all channels + black + D65 = 22 images (“flat field”)
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Spectral sensitivity measurement
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Details on workflow

Wavelength [nm]

re
l. 

in
te

n
si

ty

DUTcaptured video stream CAL3 Illuminant spectrumDUT capturing
video stream

Illuminant toggle rate: 150 
[ms]

DUT at ~20 [fps]
grabbing frames
(synchronzied)

use image data to calculate

Wavelength [nm]

re
l. 

in
te

n
si

ty

spectral response
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Details on workflow
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l. 
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Wavelength [nm]
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l. 
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Wavelength [nm]
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Wavelength [nm]

Capture all 20 single LED spectral distributions (+black +std. illu.)

…… ……

Wavelength [nm]

re
l. 

in
te

n
si

ty

spectral response

spectral response calculation

……

…… ……

……

Images taken by DUT
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Process time estimation

• spectral response toggles 22 illuminants each at 150 [ms] 

22 * 150 [ms] = 3300[ms]

• camera should capture a video stream >20 [fps]

• frame grabbing from camera stream has to be synchronized for more
accurate results

• depending on camera‘s transfer rate, start up time etc. additional

~ 2500 [ms]

• handling and report time

~2500 [ms]

total time: ~ 8.3 [sec]
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Analysis software „camSPECS“


